2. An alpha particle with kinetic energy 0.27 MeV is deflected through an angle of 60° by a golden foil. Find the corresponding value of the aiming parameter.

Solution:

We Know that

$$\tan \theta/2 = \left(\frac{q_1 q_2}{4 \pi \epsilon_0}\right) / 2 b T$$
Thus, $b = \left(\frac{q_1 q_2}{4 \pi \epsilon_0}\right) \frac{\cot \theta/2}{2 T}$
For a particle $q_1 = 2 \epsilon$, for gold q_2

For α particle

= 2 e, for gold
$$q_2 = 79$$
 e

In Gaussian units there is no factor

 $\left(\frac{1}{4\pi\epsilon_0}\right)\cdot$

On Substituting we get 0.731pm